Parameterizations and Fixed-Point Operators on Control Categories

نویسندگان

  • Yoshihiko Kakutani
  • Masahito Hasegawa
چکیده

The -calculus features both variables and names together with their binding mechanisms. This means that constructions on open terms are necessarily parameterized in two different ways for both variables and names. Semantically, such a construction must be modeled by a biparameterized family of operators. In this paper, we study these biparameterized operators on Selinger’s categorical models of the -calculus called control categories. The overall development is analogous to that of Lambek’s functional completeness of cartesian closed categories via polynomial categories. As a particular and important application of such consideration, we study the parameterizations of uniform fixed-point operators on control categories. We show a bijective correspondence between biparameterized fixed-point operators and nonparameterized ones under the uniformity conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''

In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

A new characterization for Meir-Keeler condensing operators and its applications

Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...

متن کامل

Some generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness

In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...

متن کامل

Global Optimal Realizations of Fixed-Point Implemented Digital Controller with the Smallest Dynamic Range

A novel approach is proposed to design optimal finite word length (FWL) realizations of digital controllers implemented in fixed-point arithmetic. An analytical method is first formulated to obtain a global optimal controller realization that optimizes an FWL closed-loop stability measure. Since this FWL closed-loop stability measure is solely linked to the fractional part or precision of fixed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fundam. Inform.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2003